An Integrated Multiscale Computational Modeling and Experimental Research Program

Multiscale Modeling in Biology and Biomechanics: Molecular to Continuum

Biomolecule2 proteins    Biomembrane2 Cell2 Tissue2 Organ2
Biomolecule Protein Biomembrane Cell Tissue Organ
arrows 675
Biophysics, Biochemistry, Biology and Biomechanics


Select Publications

  1. Activation Mechanisms of αVβ3 Integrin by Binding to Fibronectin: A Computational Study. Protein Science, Wang et al. 2017 (accepted for publication)
  2. Calmodulin Binding to Death Receptor 5-mediated Death-inducing Signaling Complex in Breast Cancer Cells.  Journal of Cellular Biochemistry, Fancy et al., 2017, Jan 16 [Epub ahead of print]. DOI:10.1002/jcb.25882. 
  3. Characterization of the Interactions between Calmodulin and Death Receptor 5 in Triple-Negative and Estrogen Receptor Positive Breast Cancer Cells: An Integrated Experimental and Computational Study. J Biol Chem. Fancy et al, 2016, 291:12862-12870
  4. Structural insight for roles of DR5 death domain mutations on oligomerization of DR5 death domain – FADD complex in the death-inducing signaling complex formation: a computational study.  Journal of Molecular Modeling, Yang et al. 2016, 22 (4):89.
  5. Molecular insight for the effect of lipid bilayer environments on thrombospondin-1 and calreticulin interactions. Biochemistry, Liu et al., 2014, 53(40):6309-22; 
  6. Characterization  of calmodulin and Fas death domain interaction: an integrated experimental and  computational study. Biochemistry, Fancy et al., 2014, 53 (16), 2680–2688; 
  7. Structural Insight for the Roles of Fas Death Domain Binding to FADD and  Oligomerization Degree of the Fas - FADD complex in the Death Inducing  Signaling Complex Formation: A Computational Study.Proteins: Structure, Function, and Bioinformatic, Yan et al., 2013, 81(3):377-85; 
  8.  Effects of altered  restraints in β1 integrin on the force-regulated interaction between the  glycosylated I-like domain of β1 integrin and fibronectin III9-10: a steered  molecular dynamic study.Molecular & Cellular Biomechanics, Pan et al., 2011, 8(3): 233-52;
  9. Trifluoperazine Regulation of Calmodulin Binding to Fas: A  Computational Study. Proteins: Structure, Function, and Bioinformatic, Pan et al., 2011, 79(8):2543-56;
  10. Cell Surface Engineering with Polyelectrolyte Multilayer Thin Films. J Am Chem Soc., Wilson et al., 2011,133(18):7054-64;
  11. Molecular and Structural Insight  for the Role of Key Residues of Thrombospondin-1 and Calreticulin in Thrombospondin-1-  Calreticulin Binding. Biochemistry, Yan et al., 2011, 50(4): 566-573;
  12. Role of Altered Sialylation of the  I-like Domain of β1 Integrin in the Binding of Fibronectin to β1 Integrin: Thermodynamics  and Conformational Analyses. Biophys J, Pan et al., 2010, 99 (1): 208-217;
  13. Structural Insight for the Role of  Thrombospondin-1 Binding to Calreticulin in Calreticulin-Induced Focal Adhesion  Disassembly. Biochemistry, Yan et al., 2010, 49(17): 3685-3694;
  14. Amiloride Docking to Acid-sensing Ion Channel-1. Journal of Biological Chemistry, Qadri et al., 2010, 285(13): 9627-9635.
  15. Psalmotoxin-1 docking to  human acid sensing ion channel-1. Journal of Biological Chemistry, Qadri et al., 2009, 284(26): 17625-17633;
  16. Conformation  and Free Energy Analyses of the Complex of Ca2+-Bound Calmodulin and the Fas  Death Domain. Biophys J, Suever et al., 2008, 95(12): 5913-5921;
  17. Effect  of Altered Glycosylation on the Structure of the I-like Domain of beta1  Integrin: A Molecular Dynamics Study. Proteins: Structure, Function, and Bioinformatic, Liu et al., 2008, 73(4): 989-1000;
  18. Breaking an Extracellular α−β Clasp Activates β3 Integrins.Biochemistry, Vomund et al. , 2008, 47 (44): 11616-11624;
  19. Molecular  dynamics simulations of asymmetric NaCl and KCl solutions separated by  phosphatidylcholine bilayers: potential drops and structural changes induced by  strong Na+-lipid interactions and finite size effects. Biophys J, Lee et al.,2008, 94(9): 3565-3576;
  20. D-Periodic Collagen-Mimetic Microfibers. J Am Chem Soc., Rele et al., 2007, 129(47): 14780-14787;
  21. Finite element analysis of the time-dependent Smoluchowski equation for acetylcholinesterase reaction rate calculations. Biophys J, Cheng et al., 2007, 92(10): 3397-406;
  22. Molecular dynamics simulation of salicylate effects on the micro- and mesoscopic properties of a dipalmitoylphosphatidylcholine bilayer.Biochemistry, Song et al., 2005, 44(41), 13425-13438;
  23. Tetrameric mouse acetylcholinesterase: continuum diffusion rate calculations by solving the steady-state smoluchowski equation using finite element methods.Biophys. J, Zhang et al., 2005, 88(3):1659-1665;
  24. Continuum diffusion reaction rate calculations of wild type and mutant mouse acetylcholinesterase: adaptive finite element analysis.Biophys. J, Song et al., 2004, 87(3):1558-1566;
  25. Finite element solution of the steady-state Smoluchowski equation for rate constant calculations. Biophys. J, Song et al., 2004, 86(4):2017-2029;
  26. Three Dimensional Finite Element Model of the Human Anterior Cruciate Ligament - A Computational Analysis with Experimental Validation. J Biomech., Song et al., 2004, 37(3):383-390
Last Update: 12/16/2016

   Department of Biomedical Engineering           The University of Alabama at Birmingham

bme transparent2
shelby                                                                                               UAB Skyline